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ON NON-STATIONARY MOTIONS OF LOCAL INHOMOGENEITIES 
IN A PSEUDOFLUIDIZED LAYER* 

N.N. BOBKOV and YU.P. GUPALO 

The growth (collapse) of a moving local inhomogeneity in the concentration 
of particles in a pseudofluidized layer is investigated. The inhomogenity 
is modelled using a spherical packet of particles /l-3/. The mass of the 
packet and the distribution of the particles throughout its volume remain 
constant. The density of the solid phase is assumed to be large compared 
with the density of the fluidizing fluid while the interaction between 
the phases is assumed to be linear with respect to the velocity of the 
relative motion of the phases. The simplest model, where there is no 
exchange between the particles in the packet and the particles in the 
layer, is analysed. 

As a result of the approximate solution of the problem on the motion 
of a packet of variable radius, a system of equations is obtained which 
relates the change in the size of the packet with the velocity of its 
motion in the layer and the rate of circulation of the disperse phase in 
it. The velocity and pressure fields inside and outside the packet are 
found and the stationary states of the system are determined. It is shown 
that, unlike the case of bubbles where there is always a unique stationary 
state /4, 5/, the number of stationary states of the packet can vary 
depending on the physical parameters of the pseudofluidized system. 

*Prikl.i+fatem.Mekhan..52,3,431-443,1988 
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Perturbations, cue to the motion of inhomogeneities in the conccn- 
tration of the solid phase in the pseudofluidized layer are, as is well_ 

known /6-8/ an important factor which determines the efficiency of mass 

and heat exchange processes. The quasistationary motions of packets have 
been considered previously /l-3/. 

1. Formulation of the problem. Let us introduce a non-inertial, spherical system 
of coordinates associated with the centre of a packet of radius a(t) and a polar axis which 

coincides with the direction of the gravitational acceleration vector. (Fig.l,a). The velocity 
of motion of the packet in the laboratory reference system @,Y, is equal to U, (t). On the 
basis of the above-mentioned assumptions and within the framework of the model of reciprocally 

permeating ideal fluids, we write the system of equations of motion and continuity for the 
liquid and solid phases outside and inside the packet as: 

r > a (t), v (rr t) - w (r, 7) = -k (6) VP, (r, t), Vv (r, t) = 0 

d&p [alat + w (p, t) VI w (rr t) = - V (~9 (rr t) + P. (r, t)l f d,pUd' (t)g/g + d,pg 
VW (r, t) = 0, E + p = 1 

r ==z = (G, v' (r, t) - w' (r, t) = -k' [e' (t)l Vpf' (r, t) 
8s' (t)/& + e' (7) Vv' (r, 1) = 0 

d,p' (t) Iaidt + w' (r, t) VI w’ (r, t) = 

(1.1) 

- Vhf’ (r, 4 + A’ (r, t)l t 4~' (t) U,' (4 g/g + d,p' (t) g 

+' (Q/C% + p' (7) VW' (r, t) = 0 

E’ (t) + p’ (t) = 1 

/ 
::;..,:_: a(t, 

fluidizing agent (density df) and the dispersedparticles 

.g/],.‘: ::.<.: 
(density d,, df/d,<.l) respectively, k(e) is the 

( :.,1._;: : 0 : . . : .,‘-‘ I 
_:'+,:;;., .yi!;; I 

0 ,.:j:; :;. 
permeability of the pseudofluidized layer /9/ and g 

\ I. ::‘.I . . . 
is the acceleration due to gravity. The parameters of 

\ ..,::<., ,<:. / 

D 

__, .:: the two phase flow within the packet are indicated by 

s. 

9 )r\,_:. ,/ .:': c a prime. In the third and seventh equations of (l.l), 
the terms which are proportional to &U,' (t) describe 

Yl 

L 
the inertial force which acts on a unit volume of the 

t/- 
Fig.1 disperse phase in the selected non-inertial coordinate 

07 x7 
system. Here and everywhere subsequently where nothing 

to a floating packet (p'(t)> p), 
is stated to the contrary, the upper sign corresponds 

and the lower sign to a sinking packet 

i Ud (t) 1 

(p' (t) > p)? Ud ct) = 

where there is an alternation of the signs. 

y a 
Here, v, w; Pf7 Psi E, P are the locally averaged 

/- I\ 

8 

b velocities, pressures and bulk concentrations of the 

,'..-..~,~~ j,. '\ 

In the non-inertial coordinate system being considered, we shall write the boundary con- 

ditions on the surface of the packet in the form /lo-12/ 

r = a (t), w, - D = w,’ - D = 0, e (v? - D) = E’ (0, -0; (1.2) 

Pr = Pt’, pS’ - pJ = d,lp (q2 - D’) - p' (w," - D’)l = 0 

The first two of these are the conditions that there should be no flow of the disperse 

phase through the surface of the packet, the third expresses the conservation of the flow of 

the liquid phase on the discontinuity and the last two are the conditions for the balance of 

the normal stresses in the liquid and solid phases respectively. The first and second 

conditions have been taken into account in writing down the last condition. 

In relationships (1.2), D is the velocity of motion of the discontinuity in the con- 

centration of the particles (the velocity of motion of the surface of the packet) in a 

coordinate system which moves together with the centre of the packet. 
The equation of the surface of discontinuity has the form F(r,8, cp, t)= r - a(t) =O. 

Hence D =-i, (cYFldt)/lVF( = i,a* (i, is the unit vector in the radial direction), whence D= 

ID 1 = a'. 
We also require that the flows of the phases remote from the packet should be homogeneous 

and that their velocities should be bounded over the whole flow domain. 
In the special case when there are no particles in the packet (p' (t) = 0), the formulation 

adopted corresponds to the problem on the growth (collapse) of a bubble in a pseudofluidized 

layer considered in /4, 5/. As experiments show /7, 6/, together with the motion of bubbles, 

the motions of formations such as packets (clusters, clots) of particles under known conditions 
are an important element in the picture of interphase interaction and can have a considerable 
effect on the mass- and heat-exchange characteristics in an inhomogeneous pseudofluidized 

system. The formulation described in paragraph 1 enables one to investigate the characteristics 

of the simplest non-stationary motions of packets of particles as a function of a number of 

parameters of the system to which we add, in comparison with bubbles, the total mass of the 

particles making up the packets and the intensity of their internal circulation. In particular, 
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the analysis carried out below shows that the above-mentioned parameters determine the nature 

and number of the stationary states of the packet. It is well-known /4/ that, in the case of 

a bubble, there is a unique stationary state with a radius a, and that, if a (t) > a,, the 
bubble grows while, if a (0 < a,, the bubble collapses. 

We also note that the adopted formulation of the problem on the non-stationary motion of 

packets can be extended to pseudofluidized systems of coarse particles when the interphase 

interactions are non-linear /5/. 

2. The velocity fields and the pressure distributions of the phase outside 
and within the packet. Let us consider the case when the motion of the disperse phase 

outside of the packet is potential: w(r,t)=V cp.(r,t). Then, as follows from the fourth equation 

of (l.l), the potential cps((r, t) is a harmonic function 

'Aq, (r, t) = 0 (2.1) 

which satisfies the conditions 

i- = a, am, (r, t)ldr = w, (r, t) = a’ (2.2) 

r - 00, cps (r, 1) -+ cpso (r, t) 

where (Pa" 6-7 4 is the potential of a flow which is homogeneous at infinity. 

The solution of problem (2.1), (2.2) has the form 

cp,(r. t)=*U,(t)(l+ ++se-F 

From the condition of the continuity of the solid phase within the packet, we obtain 
VW' = (a&' @)/&)/(I -&' (t)) E 5 (t). Let us now construct a particular solution of the non- 

stationary problem (l.l), (1.2) under the assumption that the flow field of the solid phase 

within the packet is a superpositioning of the solution of the corresponding quasistationary 

solution and the flows corresponding to a homogeneous expansion (contraction) of the packet 

with a velocity a', that is, we represent the velocity vector of the particles within the 

packet in the form of a sum 

w' (r, t) = wl’ (r, t) + w2’ (r. t) (2.4) 

When this is done '? wl' = 0 and the velocity field wl' corresponds to a Hill spherical 
vortex with a current radius a 0) while the vector w*' only has a radial component and 
VW,' = 5 (t). 

The flow function, corresponding to the velocity field wi' has the form 

Vs’ (r, t) = I $$$ r2(rz - a2(t))sin2tl 

where the sign determines the direction of the velocity of the solid phase within the packet 

(the upper sign corresponds to, internal circulation directed at the centre of the packet in 

the opposite direction to the vector g while the lower sign corresponds to circulation in 

the opposite direction) and the parameter U,'(t) characterizes the intensity of the motion 
of the particles in the packet. So, the circulation of the velocity of the solid phase along 

the closed "liquid" contour C depicted in Fig.l,b is equal to :Fju,’ (t)a(t) andthecorrespond- 
ence of the signs is the same as that in formula (2.5). 

From the equation for the continuity of the solid phase within the packet, we obtain 

that is, 

Wpr’ = 
rf (t) 7++ A = const (2.6) 

It follows that A = 0 from the condition of the boundedness of the velocity w'. Let 
us now verify that the condition that there should be no flow of the solid phaseontheboundary 

of the packet is satisfied. It is obvious that w,' IT;=u = w,,' I,== (I+' ITso = 0: I#.’ ITzn = 0). From 
the condition that the mass of the packet should be conserved, we have a,%, = a3 (t) p’ (t) 
where a, and pO' are certain initial values of the radius of the packet and the bulk concen- 

tration of the solid particles in it. Hence, 

p’(t)&d(t)=&& z$ = w (t) 
-at= 

3po'a&z'(t) 

ah(t) 
5 (t) = 3a’ (t)la (t) 



ConseFfntlY, Wr’ Ilea = wZr’ lrmmO ~~ a (t) 5 (t)/3 z a' (t). 

The adopted model for the expansion (contraction) of the packet is only consistent with 

the equatron of motion for the solid phase within it when the condition 

is satisfied. 

C,J a + U,,'u' -: (U,'a)' = 0 (2.7) 

Condition (2.7) has the meaning of conservation of the scale I'= Ud'a of the cirou- 

lation of the velocity of the disperse phase in the packet. The circulation of the velocity 

of the particles along an arbitrary fluid contour traced out within the packetis simultaneously 

conserved as a consequence of the validity of Thomson's theorem in the adopted model of the 

phases as ideal fluids. 

Let us now determine the pressure fields of the liquid and solid phases. As a result of 

the application of the operation of divergence to the equations of motion of the fluidizing 

agent and taking account of the continuity equations outside of and within the packet, we 

obtain the equations 

(2.8) 

for the pressures of the liquid phase. 

We shall represent the solution of the first equation of (2.8) in the form of a series 

in Legendre polynomials 

In writing out series (2.9) account has been taken of the fact that the suspended layer 

is homogeneous remote from the packet and that (apf/dy) IT_a, = d,pgrCOSe = (V,/k(e))rCOS8, where 

VO is the rate of pseudofluidization, pfm is the pressure of the fluid phase in the 

equatorial plane of the packet at a large distance away from it and y = -rcos 8. 
We shall seek the solution of the second equation of (2.0) in the form 

Pf’ (r3 t) = Pfl’ (r, t) +  pf2’ (r, t) (2.10) 

Here, Pfl’ k, t) is a harmonic function which satisfies the condition of the continuity 

of the normal stresses in the fluid phase on the surface of the packet (the fourth condition 

of (1.2)): 

Apfl’ (r, t) = 0, pfl’ (r, t) ITzn = pf’ (r, t) lr=. = (2.11) 

Jo Cm (4 a (t) Pm (cos 0’) 

C, (4 = r+Ja W + & (9, C, (Q = B, 0) + v,/k (E), C, (4 = 
B, (a . 

(0’ is the angular coordinate of a variable point on the sphere r = a (t)). 
The second term in (2.10) is the solution of Poisson's equation with a null boundary 

condition 

over 

bfz tr, 4 = x W, mz’ (r, t) La = 0 (2.12) 

The functions B,(t) are to be determined from the boundary conditions. 

-By expanding the solution of the Laplace equation in spherical functions and integrating 
the surface of the packet allowing for the boundary condition in (2.11), we find 

Pfl’ (r, t) = ~a(t)C,u)(*).) ease) 

m=a 

Next, by using Green's function of the first boundary value problem for Poisson's 
equation in the spherical domain 0 < r < a (t), we obtain the solution of problem (2.12) in 

the form 

pf2' (r. t) = x (t) (ra - aa (t)Y6 

Hence, the pressure distribution of the fluid phase within the packet has the form 

pf’(r, t)= 2 a (t)C, (t) (-&)m P, (cose) + x (t)q 
m=o 

(2.13) 
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By differentiating relationships (2.6) and (2.10) and using the condition that the flow 
of the fluid phase through the surface of the packet is continuous, we finally get 

(2.14) 

B,(t)=--*, B,(t)=& ek (e) - e’ (t) k’ [e’ (t)] 
k(~) 2ek (e) + E’ (t) k’ [E’ (t)] 

In the stationary case B, = 0 and, in the expression for B, the quantity e' = const, 
which is identical with the result obtained previously /l/. 

The flow fields of the fluid phase outside and within the packet are determined from the 
corresponding equations of motion with the aid of the pressure distribution (2.14) which have 
been found and the flow fields of the disperse phase (2.3)-(2.6) which have been constructed. 

3. The link between the velocity of the motion of the packet, the law 
governing its growth (collapse) and the intensity of the internal circulation 
of the solid phase, On account of the assumption that the packet has a spherical shape, 
the condition for the continuity of the pressure of the solid phase on its surface can only 
be approximately satisfied in the neighbourhood of the frontal points of the packet (e = 0 
in the case of a sinking packet and 6 = n in the case of a floating packet). We recall that 
a similar situation also arises in problems concerned with the motion of a gas bubble in an 
ideal fluid /13/ and in a pseudofluidized layer /14, 15,'. 

The pressure distributions of the disperse phase over the surface of the oacket, which 
correspond to the flow field of the solid particles which have been constructed and 
pressure field of the fluid phase, have the form 

p,(r, Q/r*=+ (Ud2-- .*a - +U,$sina8) - 

d,p(;r+ a~;cose~ .$Lu~ cOse- zO*a- d) + 

Pfm + Psm - p,(r,f)I,=,+d,p!-t~+l)gacose 

p~(r‘rtfIr=a=psi(f) $d,p'(t)[!ir~+IIjiacose- 

$( a'a + +UUd'asinZ e 
) 

en” - ,.a 
-7-l - pt’ (r, t) IrEa 

Here psa, is the pressure of the solid phase at infinity and the function Pso’ 0) 
determined from the condition ps’ (r, t) JP.+ = 0 which leads to the relationship 

Pso' (t) = -(ek)-'ia @)a' (Q + Pfm 

the 

(3.1) 

is 

When e=fi and e-0, we shall use the notation sin26 = 6. Then, cos e = -+I 5 612 f 
O(Sz). By only retaining the zeroth- and first-order terms in the expansion in 6 of the 
jump in the pressure of the disperse phase on the boundary of the packet 

[PA = ps‘ (r, t) La - ps (r, 4 La 

and allowing for the condition that the scale of the circulation of the solid phase within the 
packet is conserved (2.7), we obtain the following system of ordinary differential equations 
which relate the change in the size of the packet a. (9, its velocity of motion in the layer 
U,(t) and the characteristic velocity of circulation of the disperse particles in it Ud'(2): 

U," a + U*'a' = 0 (3.2) 

Passing to the limit in the last two equations of (3.2) as p'(t)-U, we get (the upper 
sign is required) 



which, in the linear interphase interaction approximation, is identical with the systenl of 

equations of motion and the rate of growth of a bubble considered in /5/. 
The system of Eqs.(3.2) has the stationary solution p' = p*', a :- a*, lJd = UdS. Ud' = Udef 

and 

By eliminating the scale of the internal circulation velocity of the disperse phase Ud*' 

and the velocity of motion of the packet from the second equation of (3.3), we obtain an 

equation of the sixth degree for determining the stationary size of the packet a, (nf = 
P/3rla*Sp*'dS is the mass of the packet). 

The corresponding stationary velocities are: 

In the limiting case when M=O (a bubble), it follows from relationships (3.4) and 

(3.5) that 

Y Pm ~ 
a*=-i- d,\pg ’ ud* = 2 1/7 (+ 112 

) 

which corresponds to the results in /4, 5/. 

Hence, the stationary size of the packet depends both on the parameters of the pseudo- 

fluidized system as well as on the total mass of the particles making up the packet and the 

magnitude of the circulation of the solid phase within it. The stationary radius of the 

packet must satisfy the conditions 

a,, < aSz < a,, p*'=C P 

a,, < a, -=c a*2r P*' > P 

(3.6) 

Here a*, is the minimum possible radius of a packet of fixed mass: p*’ = 1, a:, == 3M/ 

(4ndA ae2 is the radius at which a given mass of particles is formed into a packet with a 

density equal to the density of the homogeneous part of the layer p*‘ = p, a”,, = 3M/(4npd,). 
Let us now consider the question of the number of stationary states of a packet of 

particles in a number of special cases when Eq.(3.4) is simplified. 

Thecase P,_= (l.p~O. This condition correspondstothe assumptionthatthere areno reciprocal 

collisionsbetweenthe solidparticlesinthedomainofhomogeneouspseudofluidization andit is a 

weaker conditionthanthe analogousconditionswhichwere adopted, for example, in/10,16/. In the 
case under consideration, the number of stationary sizes of the packet is determined by the 
magnitude of the unique dimensionless parameter x = ~/&gl(nd,P) and the concentration of 

the solid phase in the domain of the homogeneous layer. The corresponding diagrams are 

presented in Fig.2,a in the case of floating packets (pi <p) and in Fig.2,b in the case of 

sinking packets (p,'>p). As the analysis of Eq.(3.4) shows, there is a unique stationary 

state in the case of a floating packet of any mass N and scale of internal circulation r. 
Let us now agree to depict the different combinations of the characteristic parameters in the 

form of the density points ,,, x. Then, when ot' < P at each point of the band n, :: (X > 0, 

()<P<l), there is a unique stationary size of the packet which satisfies the first condition 

of (3.6), 
-- 

a*3 -= (n,*"/(2p))(l + 1/ 1 m; 4P/X). 
The diagram changes qualitatively in the case of sinking packets. In this case, when 

O<P< 0.5, two stationary states of the packet are possible which satisfy the second con- 
dition of (3.6). The stationary radii of the packet are expressed by the relationships 

The corresponding domain in the half band {X > 0, 0 <p (0.5) lies between the hyperbola 
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Xl (P) = 142 - PI and the straight line x2(p) = 4p (Fig.2,b). This domain is lower-bounded 
by the domain of values of the parameters in which a sinking packet does not have a stationary 
size and is upper-bounded by a domain in which the stationary solution is unique and a, = 

atmaX > atrb XQnin -c 4. 

In the case of a dense homogeneous layer (O.S(p< 1) the half band (x> 0, 0.5<p< I} 
is decomposed into two domains. The points located below the curve xl(p) correspond to the 
absence of stationary sizes in the case of a packet with the parameters M and I'. The domain 
above xl(p) depicts pseudofluidized systems in which a sinking packet can be found in a 
unique stationary state a, = aemax. 

Hence, the parameters M and l? only have an effect on the number of stationary states in 
the case of sinking packets, that is, when p*' ’ P* Packets which are less dense with respect 
to the surrounding layer, which are similar to xxbbles /4, 51 have a unique stationary size. 
This conclusion also remains true in the cases :onsidered below. 

Fig 

.!I a P:'P 

b 

I b p:>p 

ff 1 0 

Fig.3 
The case r = 0, p=+ 0. This condition denotes that there is no circulation of the solid 

phase within the packet. In this case the number of stationary states of a sinking packet is 
determined both by the concentration p of the disperse particles in the homogeneous layer 
and the value of the dimensionless parameter % = (3Ml(16nd,))l(5p8,1(i4d~ g))3 which characterizes 
the total mass oftheparticlesmaking up the packet. The corresponding diagrams in the P¶ %- 
plane are shown in Fig .3: a) p*'<p, b) p.+'> p. In the last case, the band & = {%> 0,0< 

P(f) consists of two domains with a different number of stationary states of the packet. 
Actually, when 

%,(P)<%<W %l(P)=$&&jT 

there is a unique stationary state in the case of a sinking packet while, when 0 < % < %I (P)l 
the packet cannot be found in a stationary state for any value of the mass $1 of the particles 
constituting the packet. The unique stationary radius of the packet in cases a) and b) is 
determined by the unique positive root of the corresponding cubic equations 

9 Psm 
a*3 T-?-G a, 2-_2!_3M0 4npd8 

or, in the dimensionless form, 

Here, 
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“* = a,iL, L = 5p,,:(14d,g) 

M + 0, r + 0, in,, # @. p # 0 

Fig.4 Fig.5 

In the general case, Eq.cj.4) which determines the stationary dimensions of the packet, 

can be written in dimensionless form as follows: 

'Here, h = 901Y(7gLS) is a dimensionless parameter which characterizes the intensity of 

the circulation of the disperse phase in the packet. 

In the case of floating packets (p+'< p), Eq. (3.7) has a unique positive root, at each 

point of the spatial domain 61 = (5 >o, 1 > 0, 0 <p < I}, which determines the stationary 

radius of a packet with a mass jf and a circulation r. In the case of sinking packets 

(6%' > F) the nature of the multiplicity of stationary states is similar to that considered 

above in the case when Pa= = 0, pf 0. In fact, in the domain 8, = (5 > 0, X > 0, O< p < 0.5) 
a packet cannot have a stationary size (domain Q,,), has two stationary sizes (the domain Q;,} 

or a single stationary size (the domain Q,,), depending on the value of the mass and the scale 

of internal circulation of the disperse phase (see Fig.4). The surface 1 = h (E, PJ and 

k = A+ (E? PI> which subdivide the domain & in the the above-mentioned three subdomains, are 

described by the relationships 

At the same time 
lies below the curve 

in the case of the points of that part of the surface a = h(&p) which 

l = h (E, P) n a+ (5, PL a sinking packet with the corresponding values of 

the mass and circulation parameters g and h does not have a stationary size while, on the 

remaining part of this surface, the stationary size is unique. when the curve 1 intersects 

the surface h. = h+(g, p) from below, the number of stationary states of the packet changes from 

one to two. The coordinates & and h, of the points of the curve 1 in the concentration 

function p are given below: 

1, (E, p) = 9r-' (2~ - i + 4 co9 1/3 arccos (r - 1) X 
11 - cos 1!3 arccos(r - I)])" - 16% 

h (F;, p) = z-l 16~ - 3 + 3 (2 - 5, - 5_) (6, + L))P - 167 

X, (5, p) = SO{1 - p) E - 288.2-'1+ 

Extension of the surface h == h_ (g, p) into the domain 52, = {E > 0, h>O, 0.5 C< p < 1) 

which adds n, to a, divides R, into two parts with different numbers of stationary states 

(Fig.5). At the points of the subdomain @,,, the values of the parameters of the system 
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correspond to there being no stationary size in the case of a sinking packet. At the points 

of the subdomain Q,, and on the corresponding part of the surface h+(E, p) the values of 

the parameters correspond to the existence of a unique stationary size for a packet which 

satisfies the first condition of (3.6). We note that, in the case under consideration, p*'< 

P in the plane h = 0, which bounds the domain B from below and the diagram given above 

in Fig.3, b: h, (5, p) n {h = 0) = 5, (p) is obtained. 

4. Notion of a cluster of particles in the disperse medium. The model of the 

non-stationary motions of a packet in a pseudofluidized layer, proposed in paragraph 1, can 

be used to investigate the analogous non-stationary motions of a spherical cluster (cloud) of 

particles in a pure disperse medium. The corresponding equations of motion and continuity 

and the boundary conditions are obtained from relationships (1.1) and (1.2) in which it is 

necessary to put p = 0, psm = 0. These equations have the form 

r> a (t), of (r, t) = const = pfa, Cv (r, t) = 0, p = 0 (4.1) 

r < a (t), v’ (r, t) - w’ (r, t) = -k’ [E’ (t)lVp!' (T, t) 

ae' (t)/at + E' (t)Vv' (r, t) = 0 

d,p' (t) Laif3t + w' (r, t) Vl W' (r, t) = -V[p,' (r, t) + 
k'(r, 01 - d,p' (t)Ud' (WY + &p'(t) g 

ap’ (Q/at + p’ (d)VW’ (r, t) = 0, E’(t) + p’ (t) = 1 

r = a (t), w,’ = a’, ~7, - a‘ = s’ (II,’ - a’), pr’ = p+,, (4.2) 

ps‘ = 0 

In the case being considered the flow field of the disperse phase within the packet is 

described, as previously, by expressions (2.4)-(2.6). By passing to the limit as p-+0 in 
the second equation of (2.14), we find the pressure distribution of the fluid phase within 

the packet in the form 

p,' (r, t) = Vsx (t) (r? - ua (t)) + pf- (4.3) 

It follows from this and from the equation of motion of the fluid phase in the domain r< a(t) 

that the angular components of the velocities of the particles and the gas are identical 

everywhere within the packet. We recall that, in the quasistationary approximation considered 
in /7/, there was no relative motion of the phases in the cluster: v'(r, t) = w'(r, t), r < a(t). 
In the case of the non-stationary motions of a cluster of a kind involving expansion (con- 

traction) there is interphase slipping in the radial direction'caused by an inflow of the 

fluid phase into the cluster (by its outflow from the cluster) when its radius changes. 

If the flow of the fluid outside of the cluster is potential, that is, v (r, t) = r'(of (r, t), 
then, using expression (4.3) for the potential (pf (r, t),we obtain the following problem (it is 

assumed that the fluid phase remote from the cluster is immobile in the X&Y system): 

Aqf (r, t) = 0, &+$8r IrSa = u,. jr=. = a’ (t) - (4.4) 
E' (t) k’ [E’ (t)] apfllc?r I,.== = a’ (t) - ‘/,s’ (t) k’ [s’ (t)l. 

x (Q a it) = 0 

The solution of (4.4) has the form 

(rf(r, t)=-Lid( + w)rcost) 

From the second relationship of (3.1) ,as p- 0, we obtain the pressure distribution of 

the solid phase over the surface of the cluster ps'(r, t) = c&p'(t) [(-Ud'/g -I- f)gacose - I/, (a" + 

9/pUd1p sin2 0) - 'i, (a" a - 0'2)]. 
The system of differential equations relating a (t), ud (t) and ud' (t) is written in 

the form 

Ud'a = const = r (4.5) 

--'/,a" + (-u,'/g + 1) g = 0, (-ud'/Y f 1) Ya + 9/,ud'2 = 0 

By eliminating ud and ud' from Eqs.(4.5), we arrive at the following law governing the 

growth,(contraction) of the cluster: 

asa** = +, TB = 9-/,r2 (4.6) 

In the case of the general integral of Eq.(4.6) we obtain the relationship 

u* (t) = [(k,t + k# - y21/kl (4.7) 

where k, and k, are arbitrary constants defined by the initial conditions for the motion of 



the cluster: 

and 

U0 :- n (t) If_<,, a; = (da (t)!dt) It_" 

are the initial size and rate of change in the size ofthecluster. 

When there is no internal circulation of the solid phase in the cluster (I? = 0) we finci 

from Eq.(4.7) that a(t) = a,'t + a,. It follows from the second equation of (4.5) that, in the 

case under consideration, the centre of the cluster moves as a free falling body: LFd' .; 6, 

The cluster has a unique stationary size a, = a, subject to the condition a,' = 0 and, when 

a,' > 0 (a,' CO), its radius increases linearly with time (decreases down to the minimum 

possible value of a*1 ). 
Circulatory motion of the disperse particles making up the cluster leads to an increase 

in its rate of falling in the gas. In this case, the second equality of (4.5) and Eq.(4.6) 

yield lTd' =- 0 h - '/,a *. ;> g. This result is an agreement with the experimental data /17-19/ on 

the settling of dilute suspensions under conditions of the so-called dynamic formation of 

clusters. 

As can be seen from Eq.(4.6) when r#O, internal circulation of the solid phase leads 

to the absence of a stationary size for the cluster. An analysis of the solution of (4.7) 

shows that, in the case of clusters, the intensity of circulation in which satisfies the con- 

dition Y < u,a,', the rate of change in the radius has the sign of a,' over the whole time 

of the motion, that is, the cluster contracts when a,' < 0 and expands when a,' ,> 0. Clusters 

with a high intensity of internal circulation Y )aoao', when a,' < 0 possess the same 

property. In the latter case, if the cluster is expanding at the initial instant of time 

(a,'> 0), thenit will expand up to the instant t = u,~u,‘/(Y'- a,,%~~'~), when u'(l)= 0, after which 

this expansion is replaced by a compression in accordance with the law (4.7). 

In two special cases we obtain from (4.7): 

1) Y = a&J', the scale of the circulation of the solid phase in the cluster is specified 

by the initial condition: 

u2 (t) = 2yt + U"2 

2) ao'=O, there are no pulsations at the initial instant of time: 

u2 (t) == a02 - y%z,-92 

If the cluster contracts at t = O(u,'<O) or a,' = 0, it attains the minimum size 

a,, (p' = 1) after a time t, which is defined by the relationship 

t, = - ([a,%$ -+- y2(1 - &/UoZ)]'l~ + uoao'} UO~(U,%,'~-- y2)_' 

from which, in the special cases considered above, it follows that: 

1) y = 0, a,' < 0, t, = -(a0 - a*,)iu,' 

a . - 0, t, = a,y-'I/u,2 - u*r2 o- 

and t* (r = 0) = x which corresponds to a unique state of the cluster a = a,. 

2) Y = a,u;, a,' < 0, t, = -(a,2 - a*,~)/(2u,u,'). 

Since the state of a cluster with a radius U = a,, is non-stationary, it may be postu- 

lated that, at the instant of time t = t*, the rate of contraction (a'(t*)) instantaneously 

changes its sign to the opposite sign after which the cluster begins to expand in accordance 

with the quantitative relationship involving the parameters a*,, a' V,)> Y. 
The investigation of the non-stationary motions of packets of particles which has been 

presented above must be augmentedby an analysis of the stability of the corresponding 

stationary states. It has been shown in /4/ that the stationary size a =a, of bubbles in 

a pseudofluidized layer is unstable: the larger bubbles (~>a,) increase in size while the 

smaller bubbles (~<a,) decrease in size. 

It should be emphasized that, in the model which has been adopted and does not take account 

of exchange of solid particles between the packet and the external layer, the surface of the 

packet constitutes a tangential discontinuity in the velocity of the disperse phase. It is 

known /20/ that such discontinuities are always unstable in single phase fluids. It would be 

of interest to investigate the effect of the interphase interactions on the nature of the 

stability of tangential discontinuities of the type under consideration in inhomogeneous 
pseudofluidized systems. 
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